
1

SYSTEM SYNTHESIS FOR OPTICALLY-
CONNECTED, MULTIPROCESSORS ON-CHIP

Neal K. Bambha and Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering, and Institute for Advanced Computer
Studies University of Maryland, College Park

Abstract: Optical interconnects are being considered as a possible solution to the well-
known problems of scaling in VLSI interconnects. Along with enabling higher
speed interconnects, optics allows the construction of highly connected and
irregular networks that are streamlined for particular applications. Using these
networks, it is possible to implement application mappings that allow flexible,
single-hop communication patterns between processors. This has advantages
for reduced system latency and power. Such optically connected
multiprocessors are particularly promising for embedded digital signal
processing (DSP) applications, which are highly parallel, and typically have
tight constraints on latency and power consumption. This paper addresses
novel trade-offs involving communication routing flexibility, power
consumption, and performance that arise in the context of system synthesis of
optically-interconnected multiprocessors. We report on experimental results
that expose these trade-offs, and propose systematic techniques to address
them efficiently. We demonstrate the performance of these techniques on
several benchmark examples.

Key words: optical interconnect, scheduling, interconnect synthesis, multi-hop
communication, low power

1. INTRODUCTION

In recent years, optics has played an increasing role in multiprocessor
systems. Various studies have predicted that the energy consumed by data
communication will ultimately limit the processing speed in electronic
processors [8], [10]. Light signals do not suffer from effects such as

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
System Synthesis for Optically-Connected, Multiprocessors On-Chip

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Electrical and Computer
Engineering,Institute for Advanced Computer Studies,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 Neal K. Bambha and Shuvra S. Bhattacharyya

electromagnetic interference and capacitive effects, which limit electrical
interconnects. Many research groups have demonstrated optically-connected
multiprocessor systems (e.g., see [4], [5], [7]). However, relatively little
work has been done to develop synthesis techniques and automated mapping
tools to take advantage of such systems. A key advantage of optics for a
multiprocessor system is that it allows highly parallel data links and a large
degree of connectivity between processors. This work addresses some
fundamental issues related to mapping of applications onto optically-
connected systems, particularly for generating low-latency, low-power
schedules.

The problem of generation of communication topologies at the system
level has been examined for bus-based implementations [3], [9]. These
techniques try to optimize communication between a set of processes, and
try to minimize the total communication costs. Many techniques have also
been presented for scheduling application graphs onto multiprocessor
networks with various fixed topologies (e.g., see [2]). Our work is different
because we incorporate communication topology synthesis, limited hop
communication, and optical interconnects which are based on unidirectional
point-to-point links and give rise to new issues of schedule deadlock and
communication flexibility.

2. OPTICALLY CONNECTED SYSTEMS

Figure 1. [FAST-Net prototype system]

One example of an optically connected system is the FAST-Net prototype
[5], a high-throughput data-switching concept that uses a reflective optical

System Synthesis for Optically-Connected, Multiprocessors On-Chip 3

system to globally interconnect a multi-chip array of processors. The three-
dimensional optical system links each chip directly to every other with a
dedicated bidirectional parallel data path. This is illustrated in Figure 1 [5].
Initiatives such as the DARPA VLSI Photonics Program [13] are pushing
this technology from multi-chip arrays of processors towards single-chip
arrays of processors.

3. TASK GRAPH SCHEDULING

The computational model used in this work is that of conventional
acyclic task graphs, in which graph vertices (tasks or nodes) represent
computations and each edge represents the communication of a packet of
data from the source task to the sink task. Henceforth in this paper, we refer
to a task graph representation of an application as an application graph. A
vast range of scheduling techniques for task graphs has been developed (e.g.,
see [12] for a review of several representative approaches); however, these
techniques typically assume a fixed communication network, and do not
systematically take connectivity constraints into account. By connectivity
constraints, we mean the inability of certain pairs of processors to
communicate with each other. These constraints arise because it is
advantageous to configure the schedules in such a way that multi-hop
communication is minimized, and the relative abundance of communication
links is used instead to achieve the required communication flexibility.

One contribution of this paper is to develop a general framework for
extending arbitrary list scheduling approaches to avoid deadlock, and
operate efficiently in the presence of connectivity constraints. We also apply
this framework to jointly streamline the communication network and task
graph mapping for a given application. This can be used both for minimum-
cost dedicated implementations, and for reconfigurable networks, where the
goal is to save power consumption by activating a minimal subset of
available laser-detector pairs.

4. COMMUNICATION FLEXIBILITY

One major consequence of single-hop communication schedules is that
each processor p is restricted to send data to a subset of the set of all
processors Φ , and to receive data from a (possibly different) subset of Φ .
If these constraints are not considered, deadlock can easily occur during the
scheduling process. We define a feasible set of processors][νF for a task
ν as the largest subset of Φ on which ν can be scheduled without

4 Neal K. Bambha and Shuvra S. Bhattacharyya

deadlock. We have developed an efficient algorithm to determine the
feasible set of processors][νF for all G∈ν at any point during the
scheduling process.

Figure 2. [Example demonstrating flexibility metric.]

 We define the communication flexibility (or simply flexibility for short)
of the system at any point during the scheduling process as the sum of the
sizes of][νF for all G∈ν . The flexibility gives some measure of the
degree of constraint imposed on all tasks by a given scheduling move. Figure
2 depicts a simple example of an application graph with six tasks scheduled
on four processors.

5. SINGLE-HOP SCHEDULING FOR LOW POWER

The general class of list scheduling algorithms can easily be adapted to
produce single-hop (or n-hop) schedules by incorporating our constraint
algorithm. This is advantageous because it allows us to leverage a large
library of useful scheduling techniques.

In list scheduling, a priority list L of tasks is constructed. The priority list
is a linear ordering),,,(21 Vννν K of the tasks in the application graph

),(EVG = such that for any pair of distinct tasks iν and jν , iν is to be
given higher scheduling priority than jν if and only if ji < . Each task is
mapped to an available processor as soon as it becomes the highest-priority
task according to L among all tasks that are ready. This process is repeated
until all tasks are scheduled.

The concepts of feasibility and flexibility can be incorporated into the
general framework of list scheduling by restricting the set of candidate pro-

Partial schedule 1
A on processor 2
B on processor 1

Constraint sets 1:
F[A] = {2}
F[B] = {1}
F[G] = {1}
F[D] = {1,2}
F[E] = {1,2,3}
F[C] = {1,2,3}
Flexibility = 11

(a) Processor connection.

Partial schedule 2
A on processor 2
B on processor 2

Constraint sets 2:
F[A] = {2}
F[B] = {2}
F[G] = {1,2,3}
F[D] = {1,2,3}
F[E] = {1,2,3,4}
F[C] = {1,2,3,4}
Flexibility = 16

(b) Application graph.

System Synthesis for Optically-Connected, Multiprocessors On-Chip 5

cessors to include only those that are feasible at the given scheduling step,
and by taking flexibility into account in designing the priority metric through
which tasks are ordered.

Single-hop communication is desirable for low power, since every
communication hop incurs an additional energy cost. However, restricting
the communication to single-hop reduces the flexibility of the scheduler to
fewer possible moves in each scheduling step. In general, this would not be
optimal for producing the lowest makespan schedules. We show in Section 7
that restricting the schedule to single-hop communication can produce
significant power savings when compared to multi-hop schedules, while not
penalizing the makespan significantly.

If the communication is not constrained to be single hop, some routing
algorithm must be employed to schedule the interprocessor communication.
In our experiments, we used a greedy load-based minimal routing algorithm.
Minimal routing algorithms consider only shortest paths between processors.
Since each communication hop in an optical interconnect incurs an energy
cost, shortest path routes are desirable. A weight is assigned to each edge on
all shortest paths as a function of the change in the relative load that would
occur if it were to be used by the route. A shortest path from source
processor to destination processor is then computed with respect to those
weights. Such algorithms are often employed in multiprocessor systems [1].
Although this routing algorithm runs in polynomial time [1], in the context
of a fixed optimization budget, the time spent computing the routes in a
multi-hop schedule reduces the number of possible scheduling moves that
the scheduling algorithm can explore when compared to a single-hop
schedule.

6. TPLA ALGORITHM

Realistic optical networks may incorporate relatively high, but not

necessarily complete (fully connected), levels of connectivity. Even in fully-
connected systems, such as FAST-Net [5], it is still desirable from the
viewpoint of power and heat dissipation to have a minimal interconnect
mapping, since for a given application, non-essential transmitters can be
turned off. In this section, we illustrate how our single-hop scheduling strate-
gies, and the underlying concept of communication flexibility, can be used to
guide the synthesis of application-specific interconnect structures. The main
idea here is that for embedded multiprocessors, the interconnect topologies
should be driven by the specific application mappings that will execute
across them, and jointly designing the two is advantageous.

6 Neal K. Bambha and Shuvra S. Bhattacharyya

Specifically, we have developed a greedy, heuristic algorithm, called the
two-phase link adjustment (TPLA) algorithm, to synthesize an interconnect
and an associated multiprocessor schedule for a given application. The
TPLA algorithm starts with a fully connected network, and operates in down
and up phases. Input to the algorithm is either a makespan constraint for the
application, or a constraint on the total number of links.

Each step of the down phase in TPLA removes one link, while each step
of the up phase adds one link. One step of the down phase consists of
assigning each existing link a score based on the schedule makespan
resulting from its removal, and removing the link with the lowest score. A
history of scores is kept for each link. For the first pass through the down
phase, ties between links are broken randomly. On subsequent passes, the
link history is used to break ties. The down phase continues until all the links
are removed.

Conversely, one step of the up phase in TPLA consists of assigning a
score to each missing link based on the makespan resulting from its addition.
The up phase continues until the network is fully connected. Repeated,
alternating invocations of down and up phases are executed for some time
limit (determined by the user), and the best result found is taken. Given a
makespan constraint, this best result minimizes the number of links.
Alternatively, given a constraint on the number of links, the best result
minimizes the makespan.

7. EXPERIMENTS

Our techniques for scheduling and interconnection pattern synthesis
operate in conjunction with a given list scheduling strategy. In these
experiments, we employed the DLS algorithm [11] as the underlying list
scheduling strategy, although, as described in Section 5, any list scheduling
algorithm could have been used.

We examined a set of DSP application benchmarks and scheduled them
using two different scheduling modes, one that incorporates only feasibility
information (to avoid deadlock), and another that takes both feasibility and
flexibility into account. We refer to these as the feasibility-only and
feasibility-flexibility modes, respectively. To evaluate the performance
across a range of connectivity levels, we scheduled the applications onto
networks with varying degrees of connectivity. We also compared the
makespan and power of single-hop schedules to that of multi-hop schedules.
For the multi-hop scheduling, we used the greedy load-based minimal
routing algorithm discussed earlier.

System Synthesis for Optically-Connected, Multiprocessors On-Chip 7

In the feasibility-only mode, the processor P considered for a given task
ν at each scheduling step was restricted to be in the feasible set][νF for ν ,
as described earlier, and no modification was made to the task prioritization
metric of the underlying list scheduling strategy (DLS).

In the feasibility-flexibility mode, the processor P considered at each
scheduling step was again restricted to be in the feasible set for ν ; however,
whenever two processor assignments for ν resulted in equal priority levels

)(νL , where L represents the priority metric of the original DLS algorithm,
priority was given to the assignment that resulted in a higher value of
flexibility. In other words, priority was given to assignments that offered
greater flexibility for future scheduling decisions.

For each application, we chose a number N of processors, and then
generated a fully connected network with)1(−NN links. We scheduled the
application using both feasibility-only and feasibility-flexibility modes onto
this network. Next we removed one link from the network at random, and
again scheduled the application using both scheduling modes. We continued
this process of removing links until no links remained, resulting with all the
tasks scheduled on a single processor. We define the relative improvement
of the feasibility-flexibility mode over the feasibility-only mode by
comparing the average makespan over all points.

0 5 10 15 20 25 30 35 40 45
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70
co

m
m

un
ic

at
io

n
en

er
gy

number of links removed (0 is fully connected 42 is uniprocessor)

karp10 - 7 processors - random link removal

m
ak

es
pa

n
re

la
tiv

e
to

 u
ni

pr
oc

es
so

r

3-hop

1-hop

1-hop

3-hop

Figure 2. [Makespan and communication energy with single-hop and three-hop maximum
communication]

Figure 2 compares the makespan and communication energy for single-
hop and three-hop communication for the karp10 application. For this
application, the single-hop schedule required 24% less communication

8 Neal K. Bambha and Shuvra S. Bhattacharyya

energy while producing on average a 4% longer makespan than the three-
hop schedule. For this application, the makespan obtained without using the
flexibility metric was 26% longer than the 1-hop makespan. Table 1
summarizes this comparison for several other DSP application benchmarks.

We performed experiments with the following application graphs: fft1,
irr, fft3, karp10, qmf4, Laplace, sum1, and RBFNN. The fft graphs are
different implementations of the fast Fourier transform [6]. Karp10 refers to
the Karplus-Strong music synthesis algorithm with 10 voices (21 nodes);
qmf4 is a quadrature mirror filter bank (14 nodes). Laplace is a laplace
transform. Irr is an adaptation of a physics algorithm, and sum1 is an upside
down binary tree representing the sum of products computation. RBFNN is a
neural network classifier algorithm.

Table 1. [Relative makespan improvement obtained by using flexibility information in the
scheduling process.]
Application N 1-hop makespan

improvement
using flexibility

Reduction in
communication
energy

Makespan
penalty for 1-
hop vs. 3-hop

Fft1 7 30 16 8
Karp10 6 26 24 4
Irr 8 17 16 (2)
Qmf4 7 19 32 3
Nn16-3-4 8 21 58 2
Sum1 6 8 1 4
Laplace 7 23 4 (3)
Fft2 7 15 12 2

5 10 15 20 25 30 35 40 45 50 55
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of links removed (0 is fully connected, 42 is uniprocessor)

m
ak

es
pa

n
re

la
tiv

e
to

 u
ni

pr
oc

es
so

r

neural network 16input 3hiddenLayer 4output - 8 processors

greedy link removal
random link removal

(42% relative improvement)

Figure 3. [Link synthesis using the TPLA algorithm.]

System Synthesis for Optically-Connected, Multiprocessors On-Chip 9

We evaluated the TPLA algorithm on the RFBNN benchmark described
above. The bottom curve of Figure 3 shows the best makespan achieved for
each level of connectivity between 0 and fully connected, after one “down”
phase and one “up” phase. This gives a Pareto curve of the trade-off between
number of links and makespan for the application. For purposes of compar-
ison, the upper curve of Figure 3 shows the makespan achieved by starting
with fully connected and randomly removing one link at a time. The TPLA
algorithm shows a significant improvement (42% relative improvement)
over random removal, and is thus a promising starting point for developing
more sophisticated link synthesis methods. More broadly, it demonstrates the
effectiveness of feasibility- and flexibility-driven scheduling in iterative co-
design of optical interconnection structures.

8. CONCLUSIONS

Optical interconnect technology is promising for global communication
in embedded multiprocessors, since the interconnection patterns can flexibly
be streamlined and reconfigured to match the target applications. However,
due to the power consumption characteristics of optical links, it is useful to
restrict communication across them to single-hop transfers. We have demon-
strated an effective algorithm for determining the set of feasible processors
that will avoid schedule deadlock in a single-hop schedule, and a useful
metric, called communication flexibility, for the degree to which a given
scheduling decision constrains future decisions (in the context of the given
communication topology).

We used this algorithm and the flexibility metric in conjunction with the
DLS algorithm to map several DSP applications across a wide range of
interconnect topologies. These experiments demonstrated that incorporating
the flexibility metric into existing scheduling algorithms improves the
schedule makespan, and that single-hop schedules can significantly reduce
power consumption of the system. We also demonstrated that these
scheduling techniques could be used to effectively guide an algorithm for
jointly synthesizing the interconnection network together with the mapping
of an application onto the network.

ACKNOWLEDGEMENTS

This work was supported by the DARPA funded Optoelectronics Center
for Innovative Photonic Chipscale Technologies (Contract number

10 Neal K. Bambha and Shuvra S. Bhattacharyya

MDA972-00-1-0023). We would like to thank Vida Kianzad for her
compilation of the benchmark examples.

REFERENCES

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, O. Waarts, “On-Line Routing of Virtual Circuits
with Applications to Load Balancing and Machine Scheduling,” Journal of the ACM, vol.
44, no. 3, pages 486-504, May 1997.

[2] S. Banerjee, D. Picker, R. Fellman, and P. Chau, “Improved Scheduling of Signal Flow
Graphs onto Multiprocessor Systems Through an Accurate Network Modeling
Technique,” Proceedings of the International Workshop on VLSI Signal Processing, pages
157-167, 1994

[3] M. Gasteier and M. Glesner, “Bus-Based Communication Synthesis on System-Level,”
Proceedings of the 9th International Symposium on System Synthesis, pages 65-70.

[4] P. S. Guilfoyle, “Digital Optical Computing Architectures for Compute Intensive Applica-
tions,” Proceedings 1994 International Conference on Optical Computing, 1994.

[5] M. W. Haney, M. P. Christensen, P. Milojkovic, “Description and Evaluation of the
FAST-NET Smart Pixel-Based Optical Interconnection Prototype,” Proceedings of the
IEEE, vol. 88, no. 6, June 2000.

[6] A. Kahn, C. McCreary, J. Thompson and M. McArdle, “A Comparison of Multiprocessor
Scheduling Heuristics,” Proceedings of 1994 International Conference on Parallel
Processing, vol. II, pages 243-250, 1994.

[7] N. McArdle, M. Naruse, A. Okuto, and M. Ishikawa, “Implementation of a Pipelined
Optoelectronic Processor: OCULAR II,” Technical Digest of Optics in Computing ’99.

[8] J. D. Meindl, “Low Power Microelectronics: Retrospect and Prospect,” Proceedings
IEEE, vol. 83, no. 4, 1995.

[9] S. Narayan and D. Gajski, “Synthesis of System Level Bus Interfaces,” Proceedings of
European Design and Test Conference ‘94, pages 395-399, Feb. 1994.

[10] P.W. Smith, “On the Physical Limits of Digital Optical Switching and Logic Elements,”
Bell System Technical Journal, vol. 61, no. 8, 1982.

[11] G. C. Sih, Multiprocessor Scheduling to Account for Interprocessor Communication,
Ph.D. Thesis, Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley, April 1991.

[12] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and
Synchronization. Marcel Dekker, Inc., 2000

[13] http://www.darpa.mil/MTO/VLSI.

	annot: In System on Chip for Real-time Systems. Kluwer Academic Publishers, To appear.

